Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Mathematical Problems in Engineering ; 2023, 2023.
Article in English | ProQuest Central | ID: covidwho-2269349

ABSTRACT

The development of 5G (fifth-generation wireless systems) determines the future direction of technology and economy and has received extensive public attention. Studying the changing rules of public attention to 5G can provide an important guiding significance for the sustainable development of 5G. This paper takes Baidu Index as the measurement index of 5G public attention and analyzes the spatial and temporal evolution characteristics and influencing factors of public attention to 5G from 2011 to 2021 by using the elasticity coefficient, Gini coefficient, geographical concentration index, and panel data model. The results of the study show the following. (1) The public concern to 5G is generally on the rise, but the heat has declined in the past two years. (2) The public's 5G attention shows a seasonal effect, with the highest attention in March and June. (3) The spatial difference of 5G public attention is obvious. The eastern region has a high degree of attention, the internal differences between the eastern and western regions are obvious, and the central region is relatively balanced. (4) The factors such as local economic level, education level, Internet development, and media attention have significantly affected the public focus on 5G. Also, some suggestions are made for the sustainable development of 5G and the planning of 6G (sixth-generation wireless systems).

2.
Chin J Integr Med ; 2022 Nov 14.
Article in English | MEDLINE | ID: covidwho-2287184

ABSTRACT

OBJECTIVE: To investigate the anti-coronavirus potential and the corresponding mechanisms of the two ingredients of Reduning Injection: quercetin and luteolin. METHODS: A pseudovirus system was designed to test the efficacy of quercetin and luteolin to inhibit SARS-CoV-2 infection and the corresponding cellular toxicity. Luteolin was tested for its activities against the pseudoviruses of SARS-CoV-2 and its variants. Virtual screening was performed to predict the binding sites by Autodock Vina 1.1.230 and PyMol. To validate docking results, surface plasmon resonance (SPR) was used to measure the binding affinity of the compounds with various proteins of the coronaviruses. Quercetin and luteolin were further tested for their inhibitory effects on other coronaviruses by indirect immunofluorescence assay on rhabdomyosarcoma cells infected with HCoV-OC43. RESULTS: The inhibition of SARS-CoV-2 pseudovirus by luteolin and quercetin were strongly dose-dependent, with concentration for 50% of maximal effect (EC50) of 8.817 and 52.98 µmol/L, respectively. Their cytotoxicity to BHK21-hACE2 were 177.6 and 405.1 µmol/L, respectively. In addition, luetolin significantly blocked the entry of 4 pseudoviruses of SARS-CoV-2 variants, with EC50 lower than 7 µmol/L. Virtual screening and SPR confirmed that luteolin binds to the S-proteins and quercetin binds to the active center of the 3CLpro, PLpro, and helicase proteins. Quercetin and luteolin showed over 99% inhibition against HCoV-OC43. CONCLUSIONS: The mechanisms were revealed of quercetin and luteolin inhibiting the infection of SARS-CoV-2 and its variants. Reduning Injection is a promising drug for COVID-19.

3.
Eur J Med Chem ; 229: 114046, 2022 Feb 05.
Article in English | MEDLINE | ID: covidwho-1768050

ABSTRACT

Severe diseases such as the ongoing COVID-19 pandemic, as well as the previous SARS and MERS outbreaks, are the result of coronavirus infections and have demonstrated the urgent need for antiviral drugs to combat these deadly viruses. Due to its essential role in viral replication and function, 3CLpro (main coronaviruses cysteine-protease) has been identified as a promising target for the development of antiviral drugs. Previously reported SARS-CoV 3CLpro non-covalent inhibitors were used as a starting point for the development of covalent inhibitors of SARS-CoV-2 3CLpro. We report herein our efforts in the design and synthesis of submicromolar covalent inhibitors when the enzymatic activity of the viral protease was used as a screening platform.


Subject(s)
Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacology , Animals , Drug Design , High-Throughput Screening Assays , Humans , Virus Replication/drug effects
4.
Medicine (Baltimore) ; 100(51): e28282, 2021 Dec 23.
Article in English | MEDLINE | ID: covidwho-1595309

ABSTRACT

BACKGROUND: Novel coronavirus disease (COVID-19) is a kind of pulmonary inflammation induced by New Coronavirus. It seriously threatens people's health and safety. Clinical studies have found that some patients have different degrees of inflammation after discharge from hospital, especially in patients with severe inflammatory lung fibrosis. Early combination of Chinese medicine and modern medicine has important clinical significance. There are still many deficiencies in the current research. We studied the effectiveness of the combination of traditional Chinese medicine and modern medicine in the treatment of pulmonary fibrosis caused by COVID-19, and proposed a network meta-analysis (NMA) scheme. METHODS: According to the search strategy, we will search Chinese and English databases to collect all randomized controlled trials of traditional Chinese medicine combined with modern drugs or only using traditional Chinese medicine for new coronavirus-19-induced pulmonary fibrosis between December 1, 2019 and November 15, 2021. First, the literature was screened according to the eligibility criteria, endnotex9 was used to manage the literature, and the Cochrane Collaboration's tool was used to assess the quality of the included literature. Revman 5.3, Stata 14.2, and gemtc14.3 meta-analysis software was then used for data processing and analysis, and the grading of recommendations assessment will be used to develop and evaluate a hierarchy for classifying the quality of evidence for NMA. RESULTS: Through the analysis, the ranking of efficacy and safety of various treatments for pulmonary fibrosis caused by COVID-19 will be drawn, thus providing stronger evidence support for the choice of clinical treatment methods. CONCLUSION: Traditional Chinese medicine (TCM) combined with modern drugs has played a positive role in the treatment of pulmonary fibrosis caused by COVID-19, and this study may provide more references for the clinical medication of pulmonary fibrosis caused by COVID-19. INPLASY REGISTRATION NUMBER: INPLASY2021110061.


Subject(s)
COVID-19 Drug Treatment , Drugs, Chinese Herbal , Pulmonary Fibrosis , Bayes Theorem , Drugs, Chinese Herbal/therapeutic use , Humans , Medicine, Chinese Traditional , Meta-Analysis as Topic , Network Meta-Analysis , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/virology , Randomized Controlled Trials as Topic , Treatment Outcome
5.
Front Biosci (Landmark Ed) ; 26(10): 789-798, 2021 10 30.
Article in English | MEDLINE | ID: covidwho-1498508

ABSTRACT

Background: The coronavirus disease 2019 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected more than 210 million individuals globally and resulted in over 4 million deaths since the first report in December 2019. The early use of traditional Chinese medicine (TCM) for light and ordinary patients, can rapidly improve symptoms, shorten hospitalization days and reduce severe cases transformed from light and normal. Many TCM formulas and products have a wide application in treating infectious and non-infectious diseases. Polygonum cuspidatum Sieb. et Zucc. (P. cuspidatum), is an important Traditional Chinese Medicine with actions of clearing away heat and eliminating dampness, draining the gallbladder to relieve jaundice, removing blood stasis to alleviate pain, resolving phlegm and arrest cough. In the search for anti-SARS-CoV-2, P. cuspidatum was recommended as as a therapeutic drug of COVID-19 pneumonia.In this study, we aimed to identifies P. cuspidatum is the potential broad-spectrum inhibitor for the treatment of coronaviruses infections. Methods: In the present study , we infected human malignant embryonal rhabdomyoma (RD) cells with the OC43 strain of the coronavirus, which represent an alternative model for SARS-CoV-2 and then employed the cell viability assay kit for the antiviral activity. We combined computer aided virtual screening to predicte the binding site and employed Surface plasmon resonance analysis (SPR) to comfirm the interaction between drugs and coronavirus. We employed fluorescence resonance energy transfer technology to identify drug's inhibition in the proteolytic activity of 3CLpro and Plpro. Results: Based on our results, polydatin and resveratrol derived from P. cuspidatum significantly suppressed HCoV-OC43 replication. 50% inhibitory concentration (IC50) values of polydatin inhibited SARS-CoV-2 Mpro and Plpro, MERS Mpro and Plpro were 18.66, 125, 14.6 and 25.42 µm, respectively. IC50 values of resveratrol inhibited SARS-CoV-2 Mpro and Plpro, MERS Mpro and Plpro were 29.81 ,60.86, 16.35 and19.04 µM, respectively. Finally, SPR assay confirmed that polydatin and resveratrol had high affinity to SARS-CoV-2, SARS-CoV 3Clpro, MERS-CoV 3Clpro and PLpro protein. Conclusions: we identified the antiviral activity of flavonoids polydatin and resveratrol on RD cells. Polydatin and resveratrol were found to be specific and selective inhibitors for SARS-CoV-2, 3CLpro and PLpro, viral cysteine proteases. In summary, this study identifies P. cuspidatum as the potential broad-spectrum inhibitor for the treatment of coronaviruses infections.


Subject(s)
Drugs, Chinese Herbal/chemistry , Fallopia japonica/chemistry , Glucosides/pharmacology , Resveratrol/pharmacology , SARS-CoV-2/drug effects , Stilbenes/pharmacology , Virus Replication/drug effects , Antiviral Agents/pharmacology , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Cell Line, Tumor , Cell Survival/drug effects , Glucosides/metabolism , HEK293 Cells , Host-Pathogen Interactions/drug effects , Humans , Medicine, Chinese Traditional/methods , Pandemics , Protein Binding , Resveratrol/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Stilbenes/metabolism , Surface Plasmon Resonance/methods , Viral Proteins/metabolism
6.
Epidemiologia (Basel) ; 2(3): 315-324, 2021 Aug 05.
Article in English | MEDLINE | ID: covidwho-1341667

ABSTRACT

As the COVID-19 pandemic continues to spread worldwide, an unprecedented amount of open data is being generated for medical, genetics, and epidemiological research. The unparalleled rate at which many research groups around the world are releasing data and publications on the ongoing pandemic is allowing other scientists to learn from local experiences and data generated on the front lines of the COVID-19 pandemic. However, there is a need to integrate additional data sources that map and measure the role of social dynamics of such a unique worldwide event in biomedical, biological, and epidemiological analyses. For this purpose, we present a large-scale curated dataset of over 1.12 billion tweets, growing daily, related to COVID-19 chatter generated from 1 January 2020 to 27 June 2021 at the time of writing. This data source provides a freely available additional data source for researchers worldwide to conduct a wide and diverse number of research projects, such as epidemiological analyses, emotional and mental responses to social distancing measures, the identification of sources of misinformation, stratified measurement of sentiment towards the pandemic in near real time, among many others.

7.
Front Pharmacol ; 12: 633680, 2021.
Article in English | MEDLINE | ID: covidwho-1175552

ABSTRACT

SARS-CoV-2 infection is required for COVID-19, but many signs and symptoms of COVID-19 differ from common acute viral diseases. SARS-CoV-2 infection is necessary but not sufficient for development of clinical COVID-19 disease. Currently, there are no approved pre- or post-exposure prophylactic COVID-19 medical countermeasures. Clinical data suggest that famotidine may mitigate COVID-19 disease, but both mechanism of action and rationale for dose selection remain obscure. We have investigated several plausible hypotheses for famotidine activity including antiviral and host-mediated mechanisms of action. We propose that the principal mechanism of action of famotidine for relieving COVID-19 symptoms involves on-target histamine receptor H2 activity, and that development of clinical COVID-19 involves dysfunctional mast cell activation and histamine release. Based on these findings and associated hypothesis, new COVID-19 multi-drug treatment strategies based on repurposing well-characterized drugs are being developed and clinically tested, and many of these drugs are available worldwide in inexpensive generic oral forms suitable for both outpatient and inpatient treatment of COVID-19 disease.

8.
Infect Dis Ther ; 10(1): 483-494, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1061212

ABSTRACT

INTRODUCTION: Since December 2019, severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) has caused the coronavirus disease 2019 (COVID-19) pandemic in China and worldwide. New drugs for the treatment of COVID-19 are in urgent need. Considering the long development time for new drugs, the identification of promising inhibitors from FDA-approved drugs is an imperative and valuable strategy. Recent studies have shown that the S1 and S2 subunits of the spike protein of SARS-CoV-2 utilize human angiotensin-converting enzyme 2 (hACE2) as the receptor to infect human cells. METHODS: We combined molecular docking and surface plasmon resonance (SPR) to identify potential inhibitors for ACE2 from available commercial medicines. We also designed coronavirus pseudoparticles that contain the spike protein assembled onto green fluorescent protein or luciferase reporter gene-carrying vesicular stomatitis virus core particles. RESULTS: We found that thymoquinone, a phytochemical compound obtained from the plant Nigella sativa, is a potential drug candidate. SPR analysis confirmed the binding of thymoquinone to ACE2. We found that thymoquinone can inhibit SARS-CoV-2, SARS-CoV, and NL63 pseudoparticles infecting HEK293-ACE2 cells, with half-maximal inhibitory concentrations of 4.999, 7.598, and 6.019 µM, respectively. The SARS-CoV-2 pseudoparticle inhibition had half-maximal cytotoxic concentration of 35.100 µM and selection index = 7.020. CONCLUSION: Thymoquinone is a potential broad-spectrum inhibitor for the treatment of coronavirus infections.

9.
Chin J Integr Med ; 26(9): 663-669, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-691259

ABSTRACT

OBJECTIVE: To select potential molecules that can target viral spike proteins, which may potentially interrupt the interaction between the human angiotension-converting enzyme 2 (ACE2) receptor and viral spike protein by virtual screening. METHODS: The three-dimensional (3D)-coordinate file of the receptor-binding domain (RBD)-ACE2 complex for searching a suitable docking pocket was firstly downloaded and prepared. Secondly, approximately 15,000 molecular candidates were prepared, including US Food and Drug Administration (FDA)-approved drugs from DrugBank and natural compounds from Traditional Chinese Medicine Systems Pharmacology (TCMSP), for the docking process. Then, virtual screening was performed and the binding energy in Autodock Vina was calculated. Finally, the top 20 molecules with high binding energy and their Chinese medicine (CM) herb sources were listed in this paper. RESULTS: It was found that digitoxin, a cardiac glycoside in DrugBank and bisindigotin in TCMSP had the highest docking scores. Interestingly, two of the CM herbs containing the natural compounds that had relatively high binding scores, Forsythiae fructus and Isatidis radix, are components of Lianhua Qingwen (), a CM formula reportedly exerting activity against severe acute respiratory syndrome (SARS)-Cov-2. Moreover, raltegravir, an HIV integrase inhibitor, was found to have a relatively high binding score. CONCLUSIONS: A class of compounds, which are from FDA-approved drugs and CM natural compounds, that had high binding energy with RBD of the viral spike protein. Our work provides potential candidates for other researchers to identify inhibitors to prevent SARS-CoV-2 infection, and highlights the importance of CM and integrative application of CM and Western medicine on treating COVID-19.


Subject(s)
Coronavirus Infections/drug therapy , Drug Repositioning/methods , Drugs, Chinese Herbal/pharmacology , Glycoproteins/drug effects , Imaging, Three-Dimensional , Molecular Docking Simulation/methods , Pneumonia, Viral/drug therapy , COVID-19 , China , Computer Simulation , Coronavirus Infections/diagnosis , Glycoproteins/metabolism , Humans , Mass Screening/methods , Pandemics , Peptidyl-Dipeptidase A/drug effects , Pneumonia, Viral/diagnosis , Protein Binding , United States , United States Food and Drug Administration
10.
Res Sq ; 2020 Jun 22.
Article in English | MEDLINE | ID: covidwho-671001

ABSTRACT

SARS-CoV-2 infection is required for COVID-19, but many signs and symptoms of COVID-19 differ from common acute viral diseases. Currently, there are no pre- or post-exposure prophylactic COVID-19 medical countermeasures. Clinical data suggest that famotidine may mitigate COVID-19 disease, but both mechanism of action and rationale for dose selection remain obscure. We explore several plausible avenues of activity including antiviral and host-mediated actions. We propose that the principal famotidine mechanism of action for COVID-19 involves on-target histamine receptor H 2 activity, and that development of clinical COVID-19 involves dysfunctional mast cell activation and histamine release.

SELECTION OF CITATIONS
SEARCH DETAIL